This test is useful when we wish to test whether a mean, μ , is different from a gold standard reference value, μ 0. For example, we may wish to test whether a new product is equivalent to an existing, industry standard product. Here, the 'burden of proof', so to speak, falls on the new product; that is, equivalence is actually represented by the alternative, rather than the null hypothesis.

$$H_0: |\mu - \mu_0| \ge \delta$$

 $H_1: |\mu - \mu_0| < \delta$

Formulas

This calculator uses the following formulas to compute sample size and power, respectively:

$$n = \left(\sigma \frac{z_{1-\alpha} + z_{1-\beta/2}}{\delta - |\mu - \mu_0|}\right)^2$$

$$1 - \beta = 2 \left[\Phi \left(z - z_{1-\alpha} \right) + \Phi \left(-z - z_{1-\alpha} \right) \right] - 1 \quad , \quad z = \frac{|\mu - \mu_0| - \delta}{\sigma / \sqrt{n}}$$

where

n is sample size

 σ is standard deviation

 Φ is the standard Normal distribution function

 Φ^{-1} is the standard Normal quantile function

lpha is Type I error

 β is Type II error, meaning $1 - \beta$ is power

 δ is the testing margin